The world's leading CAD-independent Windows-native pre- and post- processor.

The world's leading CAD-independent Windows-native pre- and post- processor for advanced engineering finite element analysis.

Femap Overview


Using Femap’s digital simulation capabilities you can:

Femap is an advanced engineering simulation software program that creates finite element analysis models of complex engineering products and systems, and displays solution results. Femap can virtually model components, assemblies or systems and determine the behavioral response for a given operating environment.

  • Predict and improve product performance and reliability
  • Reduce time-consuming and costly physical prototyping and testing
  • Evaluate different designs and materials
  • Optimize your designs and reduce material usage


Femap is CAD-independent and can access geometry data from all major CAD systems including CATIA, Pro/Engineer, NX, Solid Edge, SolidWorks and AutoCAD. Once imported you can prepare the model for analysis using the geometry locator to identify and display potentially troublesome entities, such as slivers, and either remove them completely with the geometry cleanup tools or suppress them. Femap also offers a wealth of geometry creation and modification functions so you can make necessary model changes in preparation for finite element model creation.

Finite Element Modeling

The full finite element model with underlying data is fully exposed by Femap, allowing you to view, create or modify entities directly. Femap’s grouping, layering and visualization tools help you to manage model display while creating and setting up the finite element model.

Femap includes specialized capabilities to help with modeling tasks including:

  • Mid-plane extraction of thin-walled structures to aid creation of more efficient and accurate shell models
  • Weldment modeling that connects discrete solid welded parts together into a contiguous model
  • Data surfaces that allow you to create complex loading conditions based on prior analysis output for multi-physics applications

Finite Element Meshing

Femap’s 3D solid and surface meshers are tuned to generate high-quality meshes, providing well-shaped elements to ensure accurate results. Femap gives you full control over all mesh generation parameters including mesh sizing, meshing of small features, growth factors, short edge suppression, etc. With complex geometry, modification of the mesh is often required in areas where greater accuracy is desired. For this situation Femap’s Meshing Toolbox allows you to interactively modify mesh sizing parameters on the underlying geometry, and see the mesh update automatically. You can also view element quality feedback live while modifying the mesh, to ensure that a high-quality finite element model is created.

Assembly Modeling

Femap with NX Nastran supports assembly modeling, including automatic contact detection that determines the components initially in contact. The contact regions can be set to be simply in contact (with or without friction) or glued together. The contact calculations performed by NX Nastran are iterative and update during the solution, to take into account deformation changes representing the true contact condition in the final results.

Other types of component assembly modeling techniques also supported include spot-weld, fastener elements, and bolted joints with optional pre-loading.

Beam Modeling

Besides solid and shell element models Femap also supports beam modeling and meshing. This technique allows models comprising long, slender components (for which a solid meshing approach would create a large, unwieldy model) to be represented by one-dimensional elements with associated properties.

Model visualization is key to beam modeling, and with Femap you can view these elements as solid components and include offsets. Femap features a section property editor which includes a library of standard cross-section shapes. You can also define your own sections, and the built-in section property calculator automatically determines the required properties.

Also available are full beam visualization and results display options including shear and bending moment diagrams.

Composite Modeling

The use of composite materials in designs has increased significantly in recent years, and Femap can help you model and postprocess results on composite structures. With Femap’s a laminate editor and viewer, you can update the laminate properties interactively as you create and modify plies in the laminate.

You can also postprocess composite laminate results using Femap’s global composite ply feature, which allows you to view results on continuous plies through the structural model.

Solver Neutral

Femap is solver-neutral and provides in-depth pre- and postprocessing support for all of the main commercial solvers on the market, including NX Nastran, Ansys, LS-DYNA, Abaqus and TMG. You can take full advantage of the advanced analysis capabilities of these solvers using Femap’s comprehensive modeling and analysis support, particularly for dynamic, geometric and material nonlinear, heat transfer and fluid flow analyses.


A wealth of visualization capabilities help you view and interpret the results to quickly understand the model behavior. You’ll find everything you need to view and interpret the output data, including:

  • Contour and criteria plots
  • Deformed shape animations
  • Dynamic cutting plane and iso-surfaces
  • Full output selection
  • XY plots
  • Free body diagrams and grid point force balance output
  • Time and frequency domain animations

Complete access to results data is provided through the Data Table pane, which you can use to gather, sort and control the amount and type of data that is visible, to compile an analysis report.

Scalable Simulation Solutions

The Velocity Series CAE products offer scalable solutions for design engineers in the form of the CAD-embedded Solid Edge Simulation program, and Femap with NX Nastran for CAE analysts.

The Femap with NX Nastran product line itself offers solution scalability, from the more general simulation capabilities available in the base module to more advanced applications including dynamics, optimization, advanced nonlinear, rotor dynamics, heat transfer and fluid flow in add-on modules.


Femap’s open customization capability allows complete access to all Femap functions through an OLE/COM object-oriented Application Programming Interface (API), which employs standard, non-proprietary programming languages. Access to the API is through a development environment within the user interface where you can create custom programs that automate workflows and processes, and which can interact and exchange data with third-party programs such as Microsoft® Word and Excel.


Femap is an intuitive Windows®-native application. Femap’s support of multiple graphics windows and specialized panes, such as the Model Info Tree and Data Table, allow complete access to the finite element model and results data and help promote efficient work flows. You can modify the appearance of the interface to suit your requirements, including repositioning panes, modifying the level of functionality exposed, and complete toolbar and icon customization.


Since its inception, Femap development has been driven by customer needs and delivered with regular updates to help you solve increasingly complex engineering problems. Femap version 11.1 is no exception.

Learn more about the new features and enhancements, such as the more efficient results processing and graphics performance; external superelement discipline extensions; more flexible geometry modeling; an improved XY plotting capability; extended support for NX Nastran as well as other versions of Nastran; and many other customer-driven enhancements.

Femap Version 11.1


Geometry Modeling

Extensions to the NonManifold Add capability allow you to more easily consolidate solid sheets to form a single general body, in order to ensure subsequent contiguous mesh creation.

New Solid Sweep commands enhance the set of geometry modeling tools, and a more robust Mid-Surface Extraction capability is available courtesy of extensions to the underlying Parasolid modeling kernel.

Watch the Demo


FE Modeling Enhancements

Enhancements to the Model Merge capability – with extended control over entity selection, renumbering, grouping and orientation – allow you to more easily copy entities between models. The Meshing Toolbox provides you with added control over alignment of pad mesh features, and new mesh offset methods increase mesh control and versatility. The Tet-Mesher includes increased quality checking that prevents sliver element creation, and can optionally force multiple element creation through the thickness to yield more accurate results.

Watch Video


Graphics Enhancements

Graphics performance in Femap version 11.1 is improved through more efficient graphics storage and added support of OpenGL® geometry shader functionality.

Femap 11.1 can take advantage of OpenGL 4.2 (and above) graphics, which are much faster and use significantly less graphics memory.



Results data access through attached data files has been extended to include Nastran XDB formats. Femap version 11’s charting capability includes extended support for data series types and improvements to the data series display. The Free Body capability includes a new validation tool that allows you to verify the presence of requested values in the results set.


NX Nastran Integration and Customer-Driven Updates

Femap 11.1 ships with NX Nastran 9 and extends support of NX Nastran to provide closer integration between the pre- and postprocessor and solver. In addition, there are numerous other customer-driven enhancements that improve model visualization, model checking, boundary condition combination definition and extend supported analysis functionality.


Competitive advantages

  • User friendly, Windows-native, command and menu system that includes up-to-date Windows style user interface that is easily customizable
  • Superior color, model entity and group display control
  • Fast learning curve that reduces the necessary time investment before productivity returns can be gained
  • The quick-to-learn user interface allows maximum productivity to be maintained, even with occasional use
  • Unique and specialized display panes – such as the Model Info tree and Data Table – allow direct access to analysis modeling and results data enabling rapid creation and editing of models and fast comprehension of results

Competitive advantages

  • Robust CAD import capabilities
  • Supports all major CAD programs and data formats
  • CAD-independent solution with most types CAD data access available in the base module
  • Robust import editing and modification of complex 3D geometry
  • Easy identification and clean up of potentially problematic geometry